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Novel numerical solutions of Master and Fokker~Planck equations are described and com-
pared for equivalent discrete and continuous problems The two methods involve the
calculation of long-time-step propagator matrices, whose single application 1s equivalent to
many tterations of a finite difference scheme For the discrete method we present two analytic
propagators which are exact for growth-only (no decay) processes, and two approximate
propagators for growth and decay processes The continuous method couples a discrete boun-
dary condition for small clusters with an efficient continuous description for large clusters
These two methods are applied to the nucleation and growth of vapor-deposited thin films
whose atoms cluster together to form slands (Volmer-Weber growth) Mobility coalescence
of 1slands 1s included to show how “slow™ nonlinear processes may be included in the
model 1988 Academic Press, Inc

1. INTRODUCTION

An enormous variety of systems of interest in the physical, biological, and social
sciences may be described by means of Master or rate equations. A typical example
for describing the nucleation and growth of thin films 1s

dN,
72 —(GI+D1)Nl(t)+G1—1NlAl(I)+D1klNl+l(t)

where N, is the number of clusters of : atoms, G, is the growth rate of clusters from :
atoms to 1+ | atoms, and D, 1s the decay rate of clusters from ; atoms to i— 1
atoms by emission of atoms. To solve for a distribution of cluster sizes ranging from
1 to 10,000 atoms per cluster, one would solve 10,000 individual coupled rate
equations, one for each cluster size
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This Master equation approach is extremely powerful because it accurately
models individual physical processes. However, the approach is limited by its
excessive computational requirements, because the equations are coupled and must
be solved iteratively, which could require thousands of iterations. The purpose of
this paper 1s to show how to calculate long time-step propagator matrices which
allow these extreme computational requirements to be greatly reduced for many
classes of both discrete and continuous problems.

In Section II, we discuss discrete propagator methods and give a simple example
using an explicit finite difference scheme. We then present four propagator methods
which are far more efficient than finite-difference methods for many problems.

In Section III, we discuss propagator methods for continuous systems. We show
how 1t is possible to transform discrete Master equations into equivalent con-
tinuous Fokker-Planck equations [1-6]. A continuous description of a discrete
process usually allows an increased numerical efficiency while sacrificing some
degree of accuracy. We present a simple scheme for taking large time-steps which
greatly increases numerical efficiency in many systems.

In Section IV, we apply the discrete and continuous methods to a standard
problem 1n thin film nucleation, the deposition of Au onto NaCl where the Au
atoms cluster together to form islands. A novel and highly accurate method for
calculating the boundary conditions 1s discussed. The results of the discrete and
continuous methods are nearly identical, and the continuous method is significantly
more efficient.

Section V describes how to include slow physical processes, such as the
coalescence of two slands into a single larger one. Mobility coalescence has not
been included in previous calculations, except in the case of small clusters [7].
Coalescence 1s a highly nonlinear process, but it acts on a time scale much slower
than that of the capture of individual atoms, so it may be treated as a perturbation
on the propagator methods This method 1s then apphed to the nucleation and
growth of Au/NaCl, in which mobulity coalescence of Au clusters 1s important.

II. PROPAGATORS FOR DISCRETE SYSTEMS

A propagator is a Green’s function which, when applied to a function, propagates
that function forward in time. A propagator matrix describes the time evolution of
each part of a vector. For example,

N(to+1)=}, T,(t) N (1,), (1)

where N (1) 1s a vector specifymg the numbers of clusters of each size, ¢, at time ¢,
and T,(t) is a propagator matrix corresponding to a time step of 7. Repeated
applications of the matrix can propagate the vector to any future time. The purpose
of this paper is to show how to calculate accurate propagator matrices which allow
large time-steps.
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In general, it 1s a straightforward matter to calculate a sufficiently accurate
propagator matrix for use in the numerical scheme. A simple example of generating
a propagator matrix is by application of an explicit finite difference scheme, where

dN
— = —G,NJ(t})+G,_,N,_ (1) (2}
dt
AT { =Y A A s Y -dN'l Vi BN
Nitlpg+Ti= N+ 7 "=[O (3)
Combining Egs. (2) and (3) yields
N(to+ D)= N (o)1 + (=G + N, _((t)[G, (] 4)

This yields a propagator matrix T,

(7), which satisfies Eq (1) and which can be
rewritten as

N,([0+T):T"(T)N,(t0)+ T'l l(T)lel(IO)ZZTl](r)N,(IO)! (5)
where
TH(T)Z I— TG:
Tll‘l(r)erlfl (6)

T (t)=0 for j#1,1-1

In other words, T,(7) 1s the fraction of the function at : at time ¢, that has
propagated to j at time ry+ 1. This fimte difference method, cast in propagator
matrix form, 1s valid only for a small time-step 7; as t increases, so does the error.
For example, if the growth rates are equal and are such that 10% of the function
propagates from i to i + 1 during time 7, then approximately (3 x 10% =) 5% of the
function at :+ 1 should continue to propagate to 1+ 2; since the finite difference
scheme does not allow for 2-grid-space propagation, it would be in error by
approximately (5% x 10% =) 0.5% at 1+ 2.

The propagator methods to be discussed overcome this limitation by allowing the
function to propagate to any grid point. During the time of propagation, the rate
equations are assumed to be lmear so that the principle of superposition may be
used. In other words, the propagation of each part of the function 1s calculated
independently of the change of the rest of the function. This is a good
approximation 1if and only 1f the propagation of the function only slightly changes
the growth and decay rates. Thus, 1t is possible to solve nonlinear equations by
assuming they are hinear during a small time-step t.

We present four propagator methods for four different cases: growth-only
processes with equal growth rates; growth-only processes with non-equal growth
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rates; growth and decay processes with constant or slowly varying growth and
decay rates; and general growth and decay processes.

Case 1. Equal Growth Rates. For growth-only processes, it is straightforward
to construct exact propagator matrices. If the growth rates G, are equal for all 1 and
constant in time, then the propagation of the function at : to all y>1 is found by
solving

dN,
E—: —GN,(’)+GN,7[(I)
dN
_d_'[+_1= —GN, . (1)+GN,(¢)
(7)
dN
E.'s= —GN(t)+ GN,_,(1).

If we consider only the propagation from N (t,), then the boundary conditions are
Nix{to)=0and N(15)= N (1), yielding

nll([0+ T)z NJ(IO) e—(:r
Gk k (8)

k!

Py 1([0+T)= N:([O)

where n, , ., 1s the part of the function which has propagated from i to 1+ k after a
time-step 7.

Let us now consider a different set of boundary conditions, where N,(z,) # 0. By
using the principle of superposition, we can use the above result to individually
calculate the propagation of each part of the function, and then sum the results of
the propagation. The result is

N(to+1)= ) nlto+1) (9)

1<y
By comparison with Eq. (1), we find

T,,(T) =exP( _GT)
" (10)
T1+k.1(r)= e_GT-

k!

Thus, we have found an exact propagator matrix for growth-only processes with
equal growth rates.

Case 2. Non-Equal Growth Rates. It is also possible to find an exact
propagator for growth-only processes with non-equal rates (G,# G,), which are
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constant 1n time. This calculation was mspired by a paper by Zinsmeister [8] and
is similar to the above calculation for constant growth rates. The rate equations to
be solved are

dN
—=—G,N(1)+G,_N,_,(1)
dt

dN,

7[": —Gka(l)‘{'kalNk—l(t)'

As 1n Case 1, we use the principle of superposition, which yields

T,,(T) =exp( —Glr)

; (11)

T, (t)=3Y Citje 9,
A=0

where

Citl= for j=k=0,

_____G'_ﬂ“_ctﬂﬂ for k#j,

1+ k
Gl+1_G1+k

k—1

=-Y s for k=j#0 (12)
s=0

Thus, for a growth-only system, we can calculate a propagator for either equal
growth rates (EGR) or non-equal growth rates (NEGR). Both propagators are
exact for any size time-step. However, if one has nearly equal growth rates in the
NEGR method, one must retain many significant figures, especially for large time-
steps. This can be seen by inspection of Egs. (11) and (12); when growth rates are
nearly equal, the C!*4 become enormous, yet their summation in Eq. (11) must
yield a T, ,, between 0 and 1. The number of retained significant figures therefore
limits the allowed time step of the NEGR method. Of course, for very nearly equal
growth rates, the EGR method would be a good approximation, especially if G is
appropriately averaged.

Case 3. Haken's Method. A better method for treating birth and death
processes was presented by Haken [9]. He derived a propagator matrix which for
one dimension can be written in the form

exp (‘U_;é f.rf)
\/27rQ,r

T,(1)= (13)



164 ADAMS AND HITCHON

where K, the drift term, and Q, the diffusion term, are defined by
K,=G,—-D,

Q,=G,+D (14

This method 1s 1naccurate for small 7, but becomes increasingly accurate for large T,
provided that K and Q are constant independent of i and time (see Fig. 1).

If K and Q vary slowly, then 1t 1s possible to use a propagator developed by
Wissel for continuous problems [10] This propagator matrix has the form

oK, 1 ¢’ e,
J 1
exp{ —at|—2—==— j—t—t(aK + BK,) —a—
p( (ax 2o & : P PR e
le(r)= exp - 2 3
J2nt(@Q, + BQ,) (2@, + Q)
(15)
ANALYTIC PROPAGATOR HAKEN PROQPAGATOR
06 06
04 7205 04 T=05
02 02
00 00
12 18 24 30 2 18 24 30
-
z
5
]
@ 06 06
&
z 04 T2 04 T=2
=t
=
o2 02
=
€ 00 00
= 2 18 24 30 2 18 24 30
06 06
04 =10 04 210
02 02
00 00
2 18 24 30 2 18 24 30

FINAL POSITION IN X~SPACE

Fic 1 An mtal histogram of height 1 at x =11 1s propagated for different time-steps t by the
analytic (EGR) propagator and the Haken propagator for the case G=1, D=0 The results show that
the Haken propagator 1s mexact for small 7, but becomes increasingly accurate for large 7
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where o + f=1; « and B define the relative importance of K and Q at the prepoint i
and the postpoint ;. If «=0 and f=1, then K and Q are determined at the
prepoint; if a=1 and B=0, then K and Q are determined at the postpoint. If
a=1=p, then averaged values of K and Q are used; this is probably the best choice
for most problems with constant or slowly varying K and Q, especially 1if the
variation is linear with respect to x.

Case 4. Iterative Method. 1t 1s also possible to generate a long-time propagator
matnx for any problem by repeated iterations of a short-time propagator matrix
upon 1tself. For example, consider the short-time propagator matrix T, of Eq. (1)
generated by a finite difference scheme:

Nfto+1)=T (1) N(t,) (16)

To find N,(t,+ 2t), we can apply T (t) again:

N {to+20) =T, (1) N (1o + 1) = T (1) T (1) Nito)- (17)
If we simply combine the two 7=’,,, then we have a long-time-step-propagator I=',,(2r ),
W(21)=T,(1) T, (7) (18)

which satisfies
N (to+21) = T,(21) N (1) (19)

This process can be repeated indefinitely to calculate T,,(nt).

This is a slow and cumbersome method of calculating a long-time-step
propagator, but it is accurate, provided that the short time propagator is accurate.
It should be noted that although 7,(r) may have only a few non-zero elements,

T (nt) should have many non-zero elements

In summary, we have presented four methods of calculating discrete propagators.
The EGR and NEGR methods are exact for growth-only problems. The Haken
method is nearly exact if the time-steps are moderately large and the K and Q terms
remain nearly constant. The iterative method is computationally expensive, and its
accuracy is limited by the accuracy of the short-time propagator These methods
are analogous to finite-difference schemes, but these methods generally allow larger
time-steps. If the propagator matrix is easy to calculate or can be re-used, and if it
allows larger time-steps, then these propagator methods are more efficient than
finite difference schemes.
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III. PROPAGATORS FOR CONTINUOUS SYSTEMS

Discrete Master equations may be approximated by continuous Fokker-Planck
equations of the form
O0P(x, 1)

ot

2

0 .17
=T [K(x) P(x, 1)] T332 [Q(x) P(x, 1)], (20)

where P(x, t) is the probability density of the function (analogous to N in discrete
space), K(x) is the drift velocity, and Q(x) is the diffusion coefficient. This
approximation is good if K and Q vary smoothly. Also, the boundary conditions of
Section IV are important to force the solution of the Fokker-Planck equation to
the solution of the Master equation.

Wehner and Wolfer [1-6] used a path-sum method to calculate a propagator
matrix which propagates parts of the function from one grid to another during a
time-step 7, with an efficiency comparable to a finite difference method.

The propagator matrix has the form

2 X+ Ay, 2 cx A 2
E,(r):mfv_dml dx j“idm _dxg Gr(x, xo, 7) (21)

and satisfies
Pto+1)=T,(t) P(1o), (22)

where x, and x are the prepoint and postpoint in continuous space, 4.x is the width
of the histogram, and P is the height of the histogram (analogous to N in discrete
space). Gr(x, x,, T) is a propagator or Green’s function which propagates particles
from x, to x. There are many propagators which satisfy the Fokker—Planck
equation to O(t?). The simplest form, given by Dekker [11] is

N S, (_ (.v—xo-K(xo)r)z)
\/ZnQ(xO) T 20(x,) T
This is very similar to Haken’s discrete propagator (see Eq. 13). There are other

propagators which also satisfy the Fokker-Planck equation to O(t?). For example,
the Wissel propagator discussed in Section II may be written 1n continuous form:

oK(x,) 1 07
€Xp I:—(X‘L' (T—EP (‘xj)>]
V2re(2Q(x,) + BO(x,))

(xj —X,—T <ocK(xj) + pK(x,)—a %g— (x,)))

2r(aQ(x)) + BQ(x,))

Gr(x, xo, T (23)

T.(r)=

(24)

X exXp
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The advantage of the Wissel propagator is that for «=1=p, the propagator
properly weights the values of K and @ at both the prepoint and postpoint.

Wehner and Wolfer used a 9-banded matrix which was centered on the diagonal.
This meant that a histogram at 1 would be propagated to i —4, i—3, ., 1+ 4. This
forced a limitation on the time-step:

|Kt| </Q1 = dx. (25)

In other words, one limitation was that particies should not drift more than one
grid spacing, since the combined drift and diffusion terms would then propagate a
significant part of the function outside the 9 allowed bands.

However, if the 9-banded matrix is centered about the most likely postpoint
instead of about the diagonal, then much larger time-steps are allowed; ie., | K7/
may exceed \/& = Ax. The new limitation on the time-step is that K and @ remain
nearly constant over the interval from the prepoint to the most likely postpoint £,

Kxo) | _Q(xo)
K(x) o(x)’
where
x-=x0+j’ K(x) dr. (26)
0

If K and Q are constant independent of x, then there is no hmit on t and Dekker’s
propagator is equivalent to Wissel's. If K and Q vary slowly, then Wissel's
propagator is usually more accurate than Dekker’s propagator, since Wissel's
propagator includes K and Q at both the prepoint and postpoint.

The efficiency of Wehner and Wolfer’s method goes as 1*2, because as 7 1s
increased, fewer tterations (N) of the propagator are required to find the solution at
a later time ¢ = Nt, and fewer histograms are used to describe the function, since
Ax = \/a—r-

However, it is not necessary to require that Ax = \/@ If Ax is chosen greater or
less than ,/Qr, then the number of bands in the propagator should be, respectively,
decreased or increased to make sure that the propagation from the prepoint is
accounted for at all significant postpoints. If the number of bands is too small, then
the function will not be conserved and will decrease due to propagation outside the
bands This problem can be alleviated by normalization of the propagator matrix
[1-6].

In summary, it is possible to recast the discrete Master equations as a set of
continuous Fokker—Planck equations. It 1s also possible to solve these equations
numerically using a propagator method. The efficiency of the method can be
increased by choosing an appropriate set of bands in the propagator matrix, which
allows a large time-step.
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IV. ApPLICATION TO THIN FiLM NUCLEATION

The discrete propagator methods are now applied to a standard problem in thin
film nucleation, Au/NaCl. We show how to include the boundary condition of the
problem, which is the deposition of new atoms onto the substrate. Then the
analogous continuous propagator methods are also applied to thin film nucleation,
and the same boundary condition is used.

In thin film nucleation, several physical processes (deposition, re-evaporation,
diffusion, and capture-—see Fig. 2) are described by a set of Master equations

dN N x
—=R——-2N,G,— Y N,G,
dr u fn
dN
E%= —G,N,+G,N,
(27)
dN,
72 _GIN1+GI~1N1713

where N, is the number of clusters of : atoms, R 1s the deposition rate of atoms onto
the substrate, t, is the average time before re-evaporation, and G, is the capture
rate of atoms by clusters of : atoms. The factor of 2 in the first equation represents
the loss of two monomers when they combine to form a dimer. G, is given by

G,=o0,D/N,+nr’R, (28)

where ¢, 1s the capture number for diffusion, D, is the diffusion rate of atoms on the
substrate, and r, is the radius of the cluster. Thus, the first term corresponds to the

direct
re—evaporation deposition impingement

capture

J) diffusion :

substrate

before after before after
—
cluster (O/\
diffusion [> O growth/\-\ [> Q
(QO)
Ny

Mobility Coalescence Growth Coalescence

Fic 2 Vapor deposition of atoms onto a substrate
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capture of atoms by surface diffusion, and the second term corresponds to the
capture of atoms by direct impingement on the cluster. Following the method of
Lewis and Anderson [12], o, 1s found by assuming that the system 1s dilute; 1€, 1t
1s calculated by solving both a diffusion equation

Jry= —D, grad N,(r) (29)
and a continuity equation
0N N
dwv jir)+ ) _ g M) (30)
ot T

a

where ; 1s the flux. In the steady state, ¢N,(r)/ér=0. For the boundary conditions
N\(xc)= Rt,, N,(r,)=0, the solution for the total flux to a cluster ¢, J,, is

_2n(r/A) Ky(r /)

' Ko(r/A) D, N,(x), (31)

where K, and K, are zero- and first-order modified Bessel functions, and A =./Dr,
1s the mean free path before desorption. Since 6,=J,/(D,N,(xc)), 6, n Eq. (28) 1s
now defined.

It is possible to solve Eq. (27), using a discrete propagator method. Since 1t 1s
already assumed that the decay of clusters 1s negligible, this 1s a growth-only
process which can be described by the EGR and NEGR methods of Section II.
Since G, varies significantly only for small :;, we use the NEGR method for
calculating the propagation of clusters initially smaller than 100 atoms. For clusters
with more than 100 atoms, it 1s possible to use the EGR method using an
appropriately averaged G,

G, = 3(G(prepoint) + G(most likely postpoint)). (32)

The propagator methods cannot be used to calculate the boundary condition,
which is the nucleation of new islands. However, for dilute systems where N, is
nearly constant for a time-step t, it is possible to calculate the number of newly
nucleated islands. Following the method of Zinsmeister [8], the number of 1slands
NO(ty + 1), which nucleated and grew to exactly : atoms during a time-step 7 is:

G, N :
N?(to+r)=—l——][l+ y Ck,e‘G”], (33)
Gl k=2
where
C.=1 for k=1
G,
=Ck"71m for k#l

—1
=-Y C, for k=1

y=1
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FiG 3 Results of discrete propagator model of the deposition of Au onto NaCl for different
deposition times Mobihty coalescence 1s not included 1n this model.

In summary, we use the EGR and NEGR methods to calculate the propagation
of existing clusters of two or more atoms, and we use Zinsmeister’s method to
calculate the nucleation rate of new clusters. This yields a set of size distribution
histograms, which is graphed as a curve in Fig. 3. Each curve corresponds to the
function at a different time.

The same sort of calculation can be done using continuous methods. As with the
discrete case, the continuous propagator 1s used to propagate the existing clusters.
Although it 1s possible to calculate the nucleation of new clusters using continuous
boundary condition methods, this is somewhat inaccurate, since the G, vary
significantly near the boundary which is /=1 for cluster nucleation. It is more
accurate to use Zinsmeister's method and then transform those discrete results into
continuous form. This yields the nucleation rate of new clusters, and this effect 1s
simply added to the propagation of new clusters. To summarize, we add a discrete
solution near the boundary to a continuous solution far from the boundary.

The results of the continuous method are the same as the results of the discrete
method (Fig. 3) to within 1%. The discrepancies are largely due to the effect of
approximating several discrete points as a single histogram. Since the continuous
version used approximately one-third as many grids, it is about three times more
efficient. For larger 1, the continuous method is increasingly efficient, since fewer
grids are used, but this decreases the accuracy
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V. NONDOMINANT PHYSICAL PROCESSES

In thin film nucleation, the capture of atoms by clusters is the dominant process,
and this is a one-step physical process (clusters grow by one atom). However, there
are also two possible multi-step physical processes, mobility coalescence and
growth coalescence. Mobility coalescence 1s the diffusion of one cluster to another,
where clusters merge to form a single cluster; growth coalescence is the growth of
one cluster mto another. Growth coalescence becomes very significant when about
40% of the substrate 1s covered, but mobility coalescence can be significant much
earlier if the clusters are mobile.

The experimental size distribution curves measured by Schmeisser [13] give a
clear demonstration of mobility coalescence. He deposited Au on NaCl, and obser-
ved the effect of coalescence (decrease 1n total number of clusters and increase in
cluster size). Since the total coverage of the substrate was under 5%, mobility
coalescence rather than growth coalescence must have been the mechanism.

In this section, we present the results of a computer simulation of Schmeisser’s
experiments. To incorporate mobility coalescence into the model, it is important to
realize that 1t acts on a much siower time-scale than that of the dominant process
(capture of atoms by clusters) Therefore, 1t is possible to briefly ignore mobility
coalescence and use the propagator methods of Sections II and III to evolve the
distribution by one time-step. Then the effect of mobility coalescence can be
included as a perturbation on the propagator methods.

To determine the rate at which a cluster tends to capture other diffusing clusters,
one solves a diffusion equation and a continuity equation. The diffusion equation
for the total flux to a disk is

dc

J=2 D—,

Ta * dr

where J is the total flux of clusters to a cluster, D is the diffusion rate, C 1s the

concentration of all the clusters, and a 1s the radius of the cluster. The continuity
equation assumes a dilute system where capture by other clusters is insignificant,

(34)

ViCc=0 (35)
which yields
C(ry=Alnr+ B, (36)
where A and B are unknown coefficients. Two boundary conditions are applied,

C(a)=0
C(R)=¢,

(37)

where R is the edge of the Verom cell defined by R=(n¢) ~'2, and ¢ is the average
concentration far from the cluster. This yields
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c r
C(r)_ln(R/a) In ~ (38)
Combining Eqs (34) and (37) yields
c
J=2
™D (Ra) (39)

which is the rate at which a cluster captures other clusters.

To evolve the cluster distribution efficiently, we group the clusters in large sets,
where set 1 has clusters of 2 to 51 atoms, set 2 has clusters of 52-101 atoms, etc
For each set, we determine the number of clusters in the set and the weighted
average diffusion rates and size (the numbers of atoms in the cluster). Then the rate
of capture of every set by all sets 1s calculated; this depletes the population of the
original sets and creates new clusters These new clusters are spread proportionately
between the two new sets whose average sizes are centered about the average size of
the new clusters. After all these calculations are done, then the original cluster
population is decreased proportionately according to the proportion of the set
which coalesced Then the population of the new sets are added to the modified
population of the original distribution.

This method is far more efficient than individually calculating the rate of
coalescence of each cluster size with all possible cluster sizes. However, it is only an
approximation which is especially inaccurate when the diffusion rate of the clusters
varies dramatically within a set.

It seems that there are two mechamisms responsible for diffusion, both a rapid
diffusion mechanism for small islands and a slower diffusion mechamism for large
islands. The small island mechanism 1s probably the random movement of
individual atoms in a cluster; this 1s best illustrated by a dimer whose two atoms
continually shift position but remain adjacent to one another. Thus the mobility of
small clusters should decrease with increasing cluster size, but the exact relationship
1s not known, so this mechanism is not included 1n the model.

The large island mechanism is probably the random movement of the cluster as a
whole due to “dislocations™ between the 1sland and the substrate. This mechanism
should have a diffusion rate which 1s inversely proportional to the area of the
cluster, and this mechanism 1s included in our model.

In Fig. 4, we display the results of our continuous propagator method which
includes mobility coalescence We found that the best fit to Schmeisser’s experimen-
tal curves [13] was found by assuming the material parameters

D, =3x10"A%s
1,=15x10""s
L, _5x10°°D,

[ 23 >
{

where D, 1s the diffusion rate of a cluster of i atoms.
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Fic 4 Results of continuous propagator method of the deposition of Au onto NaCl for different
deposition times The physical parameters are the same as in Fig 3, but mobility coalescence s included
in this model

D, and t, were found by fitting the position and height, respectively, of the peaks
of the curves for 6, 9, 12, 15, and 20 s of deposition. After 20 s, the density of the
clusters has increased sufficiently for mobility coalescence to become important.
Coalescence decreases the total number of clusters and the number of small clusters,
but 1t increases the number of large clusters. D, was found by fitting Schmeisser’s
30-, 45-, and 60-s curves, where coalescence 15 dominant.

The above estimates for D, and 1, are probably accurate to within a factor of
two. The estimate for D, is probably accurate to within a factor of five. The estimate
for D, does fit the data weli, but 1t 1s not necessarily the exact relationship of 1 to
D,. Future comparisons with experimental data for different deposition conditions
are planned, and those comparisons should determine more clearly the accuracy
and predictive ability of this model.

In conclusion, in this section we have shown how slow processes may be
accurately treated as perturbations on the basic propagator methods (of Sections 11
and IIT) by periodically including the perturbations after one or more applications
of the propagator. An example of this 1s mobility coalescence of 1slands which
predominantly grow by capturing individual atoms. This example yielded realistic
estimates of the diffusion and evaporation rates of Au clusters on NaCl.
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VI. SUMMARY

Propagator methods are capable of accurately and efficiently solving both
discrete Master equations and equivalent continuous Fokker-Planck equations.
Four methods of calculating discrete propagator matrices have been described: the
NEGR and EGR methods for growth-only problems; Haken’s method for
problems with slowly varying growth and decay coefficients, and an iterative
method for general problems. For problems in which the growth and decay rates
vary slowly in time, these methods allow larger time-steps than explicit finite
difference schemes and thus are typically orders of magnitude faster.

The equivalent continuous propagator methods yield nearly identical results to
the discrete methods. Also, by decreasing the number of grid points used to describe
the function, the continuous method may be increased 1n efficiency at a modest cost
in accuracy. Thus, the continuous method 1s best for describing the evolution of
functions which vary slowly in coordinate space and have many (i.e., thousands) of
discrete grid points. The continuous method employed here 1s much more efficient
than finite differences in highly deterministic systems. We have shown how to
couple a more accurate discrete boundary condition to the continuous function for
certain cases.

Finally, we have applied these propagator methods to a real problem—the
nucleation and growth of vapor-deposited thin films. Propagator methods were
used to describe the dominant process, the capture of atoms by clusters. Mobility
coalescence, a slower process, was periodically included as a perturbation on the
process described by propagator methods. By comparison with experimental
results, 1t was possible to quantitatively determine diffusion and re-evaporation
rates. These numerical simulations using propagator methods were orders of
magnitude faster than an explicit finite difference scheme would have been.
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